
Coreset for k-means of streaming lines

Marom, Yair
yairmrm@gmail.com

Feldman, Dan
dannyf.post@gmail.com

May 11, 2018

1 Abstract

This motivates the k-means for lines problem: Given set of n lines in Rd compute the set of k centers (points)
that minimizes the sum of squared n distances over each line and its nearest point.

We propose the first PTAS for this problem that returns a (1 + ε)-approximation in O(n) time for any
constant error ε ∈ (0, 1), and k, d ≥ 1. Extensions include streaming version that uses O(log n) points in
memory and update time per point, dynamic algorithm that supports deletion (as the sliding window model),
sum of (non-squared) distances, robust m-estimators, ignoring m outliers, and more. The algorithms can
run on data that is distributed among M machines (e.g. cloud, GPU) where the running time and memory
usage reduces linearly with M .

Our main technical results is a constructive proof that every such set of n lines has a weighted subset
(core-set) of only O(|CoresetSize|) lines whose sum of weighted distances is the same for every k centers,
up to (1± ε).

Experimental results on a system for tracking a quadcopter shows that our algorithms significantly
outperforms existing heuristics also in practice.

2 Introduction

Clustering is the task that aims to group a subset of objects that are more similar to each other from the
other objetcs in the group, that group called a cluster. There is a lot of different clustering techniques, but
most noticeable and popular is Lloyd’s algorithm or the k-means algorithm [1], [2] that was first published
in 1955.

The classical Euclidean k-means problem input is a set of n points in Rd, and the purpose is to compute
a set of k-centers (that are also points in Rd) that minimizes the sum of squared distances over each input
point to its nearest center. Geometrical objects clustering in R2 was discussed in Weber Problem [3] and
assumes that the dimension of the input is limited. But when handling data in high dimension the task
become much more harder. Many variations and restrictions to this standard setting have been addressed.
They differ from each other by the type of objects they are clustering, the number of groups, the dimension
of the problem and the objective function. Each one of those problems has different motivation and can
be related to different fields of research. Since the problem is proven to be NP-Hard [7], [8], a lot of effort
was invested in finding approximation algorithms for these problems. Techniques such as PCA/SVD [4], [5]
or Johnson-Lindenstraus [6] aims to reduce the the input dimensionality. However, such techniques project
the data and turn it into dense data, and the k-means of the projected points are no longer a subset of the
original input.

One of the approximation algorithm method for this problem is by using Coresets. Given a set of n points
in Rd, and an error parameter ε > 0, a coreset is a small set of weighted points in Rd, such that the sum of
squared distances from the original set of points to any set of k centers in Rd can be approximated by the sum
of weighted squared distances from the points in the coreset. Running an existing clustering algorithm on

1

the coreset yields approximation to the output of running the same algorithm on the original data. Coresets
were first suggested in [9] as a way to improve the theoretical running time of existing algorithms. Moreover,
a coreset is a natural tool for handling Big Data using all the computation models that we talked about.

Clustering and shape fitting problems on points have been actively studied in the past decade. For the k-
center problem on points in Rd, efficient approximation algorithms with running time polynomially dependent
on d are available. A simple greedy algorithm [15, 16], finds a 2-approximation and can be implemented
in optimal time O(nd log k) [17]. Another result using coresets based techniques for k-means achieves a

(1 + ε)-approximation algorithm with running time kO(k/ε2)dn [18, 10, 11], were based on partitioning the
data into cells, and take a representative point from each cell to the coreset, but these algorithms for points
in Rd do not generalize to the case of incomplete data (i.e., lines), and with exponential size of d. Recently,
deterministic construction of size O(1/ε2) was suggested in [25] for the case k = 1, and for k > 1 [26] suggest
an streaming algorithm for computing a provable approximation to the k-means of sparse Big data.

In facility location problems [13, 14], the input points represent the location of clients, and the centers
are called facilities. In this case we might have constraints that some of the centers will be closer to some
clients. A major difficulty in such a generalization lies in the lack of a triangle inequality when considering
lines. The problem is not that the triangle inequality is slightly violated, but that no relaxation of it holds.
No matter how far apart lines a and c are, there is always a line b that intersects both.

2.1 Preliminaries

• Let d ≥ 1 be an integer. For every p ∈ Rd, a set of points X ⊆ Rd and a finite set of such sets
X = {X1, X2, . . .} in Rd, let dist(X, p) = minx∈X ‖x− p‖ be the distance from X to p, let dist(X , p) =
minX∈X dist(X, p) be the distance from X to p, let dist(X ′, X) = minx′∈X′ dist(X,x′) denote the
distance from X ′ ∈ X to X, and let cost(X , X) =

∑
X′∈X dist(X ′, X) be the sum of distances from X

to X.

• For every positive integer n ∈ N, we denote the set {1, . . . , n} by [n].

• Here and in the rest of the paper, ties are broken arbitrarily

2.2 Problem Statement

In the familiar k-means clustering problem, the input is a set P of n points in Rd, and the goal is to compute
a set C of k centers (points) in Rd, that minimizes the sum of squared distances over each point p ∈ P to
its nearest center in C, i.e.

C ∈ arg min
C′⊆Rd,|C′|=k

∑
p∈P

min
c′∈C′

‖p− c′‖2 .

A natural generalization of the k-means problem is to replace the input set of points P by a set L of n lines
in Rd.

Definition 2.1 (k-means for lines) Let L be a set of n lines in Rd. For an integer k ≥ 1, a k-means of
L is a set C ⊆ Rd consist of k points that minimizes the sum of n squared distances from C to L, i.e.

C ∈ arg min
C′⊆Rd,|C′|=k

∑
`∈L

min
c′∈C′

dist2(`, c′).

In this paper, for every set L of finite number of lines in Rd, we are interested in seeking a compact
representation S ⊆ L that approximates cost(L,C) for every set C ⊆ Rd of k points. We will use the
following definition.

Definition 2.2 ((k, ε)-coreset) Let L be a finite set of lines in Rd, k ≥ 1 be an integer and a small ε > 0.
A pair (S, µ) is a (k, ε)-coreset for L if for every set C ⊆ Rd of k points we have

(1− ε)cost(L,C) ≤ cost′(S, µ,C) ≤ (1 + ε)cost(L,C),

2

where S = {s1, . . . , sm} is a set of m lines in Rd, µ = {µ1, . . . , µm} ⊆ R and

cost′(S, µ,C) =

m∑
i=1

µi · dist(si, C).

We present coreset construction with provable approximations for a family of natural k-clustering optimiza-
tion problems. The running time is linear in both the number of data lines n, their dimensionality d, and
the number k of desired centers. The resulting coreset consists of O(|CoresetSize|) weighted lines that
approximate the sum of square distances for any k-centers. In particular, we can use this coreset to compute
the k-centers that minimize the sum of squared distances to the input lines (k-centers over time) and for
robust m-estimators.

2.3 Related Work

Langebreg and Shculman used Helly’s theorem [20] (intersection of convex sets) to introduce a “k-center
problem” for lines [21], trying to cover a collection of lines with k balls in R3. The usual starting point for
statistical theory, learning theory, or estimation for control, is an input set consisting of a list of empirically
gathered data points in Rd. One of the serious gaps between statistical theory and practice, however, lies
with incompletely-specified data. Essentially, the issue is that a high-dimensional data point is not specified
by one “measurement” but by many, and that some of those measurements may be missing. They suggests
a particular method of imputation – given a “data line”, find a ball intersecting it, and choose the point on
the line closest to the center of that ball.

Langebreg and Schulman [19] addressed the 1-center problem (i.e., the case k = 1 to find a single ball
intersecting all input lines). From a computational point of view, the 1-center problem significantly differs
from the general k-center problem, the 1-center problem is a convex optimization problem and therefore
fundamentally easier than the cases of k-center for k ≥ 2.

The similarity to our problem is the statistical motivation and specifically the notion that the region of
intersection of a line with a ball is a useful imputation of the missing data on that line.

Other works
Also there has been work on “clustering points with k” lines [22], [23], [24], where one finds a set of lines

L such that the set of cylinders with radius r about these lines covers all the input points S.

3 Coreset for k-means for lines

We would like to compute a (k, ε)-coreset for our data. A (k, ε)-coreset (S, µ) for a set L of lines, approximates
the fitting cost of any query k-means for L up to a small multiplicative error of 1 ± ε. We note that the
k-means for L can be computed using the naive algorithm 4-Approximation(L, k), with running time of
nO(k) ; See Algorithm 3. We will do it in a linear time to our input.

The main idea of the coresets is to take a small and smart sample from the input data by its centers of
gravity, and show that running the naive algorithm on that small sample brings almost the same results we
would get from running it on the original input, and from the size of the sample that running time will be
significantly small. However, if we knew the centers of gravity, we could solve the original problem with the
optimal clustering. In order to solve this situation of an egg and a chicken, we will calculate a bi-critia for
the problem as a starting point (see Algorithm ??). That is, instead of returning k points that minimize the
sum of distances from a set of n lines, we will return k · log(n) points that minimize the sum of distances
from these lines up to a constant factor, with a probability of at least 1− δ. We will set it with the following
definition.

Definition 3.1 (α, β-approximation) Let L be a set of finite number of lines in Rd, k ≥ 1 be an integer,

3

α, β ≥ 0, B ⊆ Rd s.t. |B| = βk, and B : L→ B such that∑
`∈L

dist(`,B(`)) ≤ α min
C⊆Rd,|C|=k

∑
`∈L

dist(`, C).

Then B is called an α, β-approximation for L.

Once we have a starting point as the α, β-approximation, we can perform some analysis on the lines in
L relative to these kβ centers, and get an estimation for the centers of gravity of the lines. The full process
and its immediate result will be explained in the following theorem and algorithm.

Theorem 3.2 Let L be a set of n lines in Rd, k ≥ 1 be an integer and ε, δ ∈ (0, 1). Let G be the output set
of the call to α, β-Approximation(L, k, ε, δ) ; See Algorithm ??, and let (S, µ) be the output pair of the call
to Coreset(L, k,B,m) ; See Algorithm 1, and m = |CoresetSize|. Then, (S, µ) is a (k, ε)-corsets for L of
size m, and can be compute in O(???) time, with a probability of 1− δ.

Algorithm 1: coreset(L,w, k,B,m)

Input: A set L of n lines in Rd, a set w ⊆ R of n corresponding weights, a positive integer k,
α, β-approximation B : L→ B for L and a positive integer m < n.
Output: A pair (S, µ) which is a (k, ε)-coreset for L.

1 for every b ∈ B do
2 Lb ← {` ∈ L | B(`) = b}
3 T ← 0
4 for every b ∈ B and ` ∈ Lb do

5 s(`) = α·dist(`,b)
cost(L,B) + 2α · SL′(`′, k) /* See Definition 4.12 and Equation (13) */

6 T ← T + s(`)

7 for ` ∈ L do

8 prob(`) = s(`)
T

9 Pick a sample S of at least m lines from L where each line is sampled i.i.d. with probability prob(`).
10 Set u : L→ [0,∞) s.t. for every b ∈ B and ` ∈ Lb,

u(`) =

{
w(`)

|S|prob(`) , if ` ∈ S
0, otherwise

11 return (S, u)

Set δ = 1
2 yields a 1 − 1

2x probability of success for running Coreset algorithm for x times, and for
efficient k-means we run the (1 + ε)-Approximation algorithm on our small coreset instead of the original
large input - as we summarize as follows.

Theorem 3.3 Let L be a set of finite number of lines in Rd. A (1 + ε)-approximation to the k-means for L
can be computed in O(???) time.

4 Proof of Correctness

4.1 α, β-Approximation

Let d, k be two positive integers, and let L = {`1, . . . , `n} be a set of n lines in Rd. We denote by OPT (L, k) ⊆
Rd a set of k points that minimizes the total cost to L, i.e. OPT (L, k) ∈ arg minP⊆Rd,|P |=k cost(L,P). For
convenience, we denote the set of points OPT (L, k) by P ∗.

4

Algorithm 2: α, β-Approximation(L, k)

Input: A set L of n lines in Rd and a positive integer k
Output: A set of k · log n pairs [p̃, L′], where p̃ ∈ Rd and L′ ⊆ L, that satisfy Theorem 4.1

1 G ← ∅
2 while |L| > 1 do

3 S ← i.i.d sample consist of O

(
log

(
ndk log k

δ

)
2ε2

)
lines from the uniform distribution over L

4 P̃ ← 4-Approximation(S, k)

5 L′ ← arg min
X⊆L,|X|= |L|2

cost(X, P̃)

6 foreach p̃ ∈ P̃ do

7 L′p̃ =
{
`′ ∈ L′ | ∀q ∈ P̃ : dist(`′, p̃) ≤ dist(`′, q)

}
’

8 G ← G ∪
{
p̃, L′p̃

}
L← L \ L′

9 return G

Theorem 4.1 Let L be a set of n lines in Rd and k be a positive integer, suppose that G is the output set
of the call to α, β-Approximation(L, k) ; See Algorithm ??. Let P̃ denote the union of p̃ ∈

{
p̃, L′p̃

}
over

every pair
{
p̃, L′p̃

}
∈ G. Then,

cost(L, P̃) ≤ 4 · cost(L,P ∗).

We will prove the correctness of the last theorem in the following two parts.

4.1.1 Robust Approximation

First, we show that for every finite set L of lines in Rd, we can compute a set P ⊆ Rd of k points that
minimizes the sum of distances to L up to a constant factor, and in particular - minimizes the sum of
distances to each subset of lines L′ ⊆ L up to a constant factor - which will help us a lot later.

Algorithm 3: 4-Approximation(L, k)

Input: A finite set L of lines in Rd and a positive integer k

Output: A set P̃ ⊆ Rd of k points that satisfies Theorem 4.2

1 Q← ∅
2 P̃ ← ∅
3 for every ` ∈ L do
4 Q← Q ∪Q(L, `) ; See Claim 4.4

5 P̃ ← arg minP ′⊆Q,|P ′|=k cost(L,P ′)

6 return P̃

Theorem 4.2 Let L be a set of n lines in Rd and k be a positive integer, suppose that P̃ is the output set
of the call to 4-Approximation(L, k) ; See Algorithm 3. Then, for every subset L′ ⊆ L of lines,

cost(L′, P̃) ≤ 4 · cost(L′, P ∗).

Proof.

5

Claim 4.3 For every point p ∈ Rd, let L(p) ∈ L denote the closest line to p in L, and let proj(L, p) ∈ L(p)
denote the closest point to p in L(p). For every p∗ ∈ P ∗, let p′ = proj(L, p∗). That is, the translation of p∗

to its nearest line in L (see the first transition in Figure 1). For every p∗ ∈ P ∗, let the subset of lines in L
that are closer to p∗ ∈ P ∗ than the other points be L′(p∗) = {` ∈ L | ∀q ∈ P ∗ \ {p∗} : dist(`, p∗) ≤ dist(`, q)}.
Then, for every p∗ ∈ P ∗, ` ∈ L′(p∗),

dist(`, p′) ≤ 2 · dist(`, p∗). (1)

Figure 1: Example for k = 2. The input is a set L = {`1, . . . , `5} of lines, and the translated center points
are the sets, from left to right respectively, P ∗ = {p∗1, p∗2} , P ′ = {p′1, p′2} and P̃ = {p̃1, p̃2}.

Proof. Let p∗ ∈ P ∗, ` ∈ L′(p∗). From the right angle inequality and from the fact that for every `′ ∈ L′(p∗)
we have ‖p∗ − p′‖ ≤ dist(`′, p∗), we get

dist(`, p′) ≤ dist(`, p∗) + ‖p∗ − p′‖ ≤ 2 · dist(`, p∗).

�

Claim 4.4 For every line ` in Rd and a finite set L of lines, let

Q(L, `) =

{
c ∈ ` | ∃`′ ∈ L : c ∈ arg min

c′∈`
dist(`′, c′)

}
,

i.e. Q(L, `) is a set of |L| − 1 points in ` s.t. each point in Q(L, `) is the closest point in ` to a different
`′ ∈ L. For every p∗ ∈ P ∗, let p̃ ∈ arg minc∈Q(L,L(p∗)) ‖c− p′‖. That is, moving p′ to its closest point in
Q(L,L(p∗)) (see the second transition in Figure 1). Then, for every p∗ ∈ P ∗, ` ∈ L′(p∗),

dist(`, p̃) ≤ 2 · dist(`, p′). (2)

Proof. For every p ∈ Rd and a line ` in Rd, let `(p) ∈ ` denote the projection of p onto `. Let p∗ ∈ P ∗,
and let ` = L(p∗) ∈ L be the closest line in L to p∗. Let p′, p̃ ∈ ` be two points in ` that were made after
the first and the second translations of p∗, respectively, as describe above. For every line `′ ∈ L \ {`}, let the
pair of points (t1 ∈ `, t2 ∈ `′) ∈ arg mint′1∈`,t′2∈`′ ‖t

′
1 − t′2‖, i.e. the closest points in ` and `′. ; See Fig. 2.

By the definition of p̃ as the closest point to p′ in Q(L, `), we obtain

‖p̃− p′‖+ ‖p′ − t1‖
‖p′ − t1‖

≤ ‖p
′ − t1‖+ ‖p′ − t1‖
‖p′ − t1‖

= 2, (3)

6

Figure 2: Example in 3 dimensional space. Given two lines `, `′ ∈ L, where p̃, p′ ∈ `, and ‖t1 − t2‖ is the
shortest euclidean distance between ` an `′.

from this construction, we have that the two quadrilateral made by the two sets of points {t1, p′, `′(p′), t2}
and {t1, p̃, `′(p̃), t2} are similar (or two similar rectangles if ‖t1 − t2‖ = 0 and the two lines are intersect),
and from the polygons similarity we get

‖p̃− `′(p̃)‖
‖p′ − `(p′)‖

=
‖p̃− p′‖+ ‖p′ − t1‖

‖p′ − t1‖
, (4)

plugging (3) in (4) yields
dist(`′, p̃)

dist(`′, p′)
=
‖p̃− `′(p̃)‖
‖p′ − `′(p′)‖

≤ 2,

i.e.
dist(`′, p̃) ≤ 2 · dist(`′, p′). (5)

�

Corollary 4.5 For every line ` ∈ L, we have

dist(`, P̃) ≤ 4 · dist(`, P ∗) (6)

Proof. Immediate from the combination of (1) and (2). �

And from the linearity of the cost function, we get that the property in the last corollary is maintained for
every subset L′ ⊆ L, and that proves the theorem. �

4.1.2 Bound on the VC-dimension

In each iteration of the α, β-approximation (see Algorithm 2), we have a set L′ ⊆ L consist of x lines,
and we compute k pairs

{
p̃, L′p̃

}
, s.t. the union over every p̃ is a set of k centers that minimizes the sum

of squared distances to L′ up to a constant factor. In order to compute such pair, we need to run the
4-Approximation algorithm at each iteration, which can take a very long time. In this part, we show

that running the 4-Approximation algorithm on an i.i.d sample consist of O

(
log

(
ndk log k

δ

)
2ε2

)
lines from the

uniform distribution over L′ is enough to get the same results up to ε additive error. In order to show that,
we use a method due to Warren [ref?] to bound the VC-dimension of following range space.

Definition 4.6 (range) For every finite set L of lines in Rd, r > 0 and a set of k points P ⊆ Rd, let

range(P, r, L) =
{
` ∈ L | dist2(`, P) ≤ r2

}
.

7

Lemma 4.7 For every set L of n lines in Rd, we have∣∣{range(P, r, L) | P ⊆ Rd, |P | = k, r > 0
}∣∣ ∈ O (ndk log k

)
(7)

Proof. In what follows, sgn(x) denotes the sign of x ∈ Rd. More precisely, sgn(x) = 1 if x > 0, sgn(x) = −1
if x < 0, and sgn(x) = 0 otherwise. We use the following theorem.

Theorem 4.8 (Theorem 3 in (War68)) Let {f1, . . . , fm} be real polynomials in d∗ < m variables, each
of degree at most ` ≥ 1. Then the number of sign sequences (sgn (f1(x)) , . . . , sgn (f1(x))), x ∈ Rd, that

consist of the terms 1,−1 is at most
(
4e`m
d∗

)d∗
.

Corollary 4.9 (Corollary 3.1 in (War68)) If ` ≥ 2 and m ≥ 8d∗ log(`), then the number of distinct
sequences as in the above theorem is less than 2m.

We use these results to obtain.

Corollary 4.10 Let d, k be positive integers. Let Qk be the family of all sets which are the union of k points
in Rd. Let L = {`1, . . . , `n} be a set of n lines in Rd. Let F ∗ = {f1, . . . , fn}, where fi(Q) = dist2(`i, Q)
for every i ∈ [n], Q ∈ Qk. Then the dimension of the range space RQk,F∗ that is induced by Qk and F ∗ is
O(dk log k).

Proof. We first show that in the case k = 1 the VC-dimension of the range space RQk,F∗ is O(dk). Then
the result follows from the fact that the k-fold intersection of range spaces of VC-dimension O(dk) has
VC-dimension O(dk log k) [BEHW89, EA07 in subspace.pdf].

If n < d then the result is immediate. Thus, we consider the case n > d. We will first argue that the
distance to a line can be written as a polynomial in O(d) variables. Let p ∈ Rd, for every i ∈ {1, . . . , n}, we
can write dist2(`i, Q) = (p− bi)tXi where Xi ∈ Rd×d−1 with Xt

iXi = I and bi ∈ Rd. Therefore, fi(p)− r is
a polynomial of constant degree ` with d∗ ∈ O(d) variables.

Consider a subset G ⊂ F with |G| = m, denote the functions in G by {f1, . . . , fm}. Our next step will be
to give an upper bound on the number of different ranges in our range space RQk,F∗ for k = 1 that intersect
with G. Recall that the ranges are defined as{

` ∈ L | dist2(`, P) ≤ r2
}

for P ∈ Qk, and r ≥ 0. We observe that for every i ∈ {1, . . . , n} we have dist2(`i, P) ≥ r2, iff sgn(fi(P) −
r2) ≥ 0. Thus, the number of ranges is at most∣∣{(sgn(f1(P)− r2), . . . , sgn(fm(P)− r2)

)
| P ∈ Qk, r ≥ 0

}∣∣ .
We also observe that for every sign sequence that has zeros, there is a sign sequence corresponding to the
same range that only contains 1 and −1 (this can be obtain by infinitesimally changing r). Thus, by Theorem

4.8 the number of such sequences is bounded by
(
4e`m
d∗

)d∗
, where ` = O(1). By Corollary 4.9 we know that

for ` ≥ 2 (which we can always assume as ` is an upper bound for the degree of the involved polynomials)
and m ≥ 8d∗ log ` the number of such ranges is less than 2m. At the same time, a range space with VC-
dimension d must contain a subset G of size d such that any subset of G can be written as G ∩ range for
some range ∈ ranges, which implies that the number of such sets is 2d. Since this is not possible for G if
m ≥ 8d∗ log `, we know that the VC dimension of our range space is bounded by 8d∗ log ` ∈ O(d) (for the
case k = 1). Now the he result follows by observing that in the case of k centers every range is obtained by
taking the intersection of k ranges of the range space for k = 1. �

�

8

Theorem 4.11 Let L be a set of n lines in Rd, a positive integer k and ε, δ ∈ (0, 1), and let S ⊆ L be an

i.i.d sample consist of O

(
log

(
ndk log k

δ

)
2ε2

)
lines from the uniform distribution over L. Then, with a probability

of 1− δ, for every r > 0 and a set P ⊆ Rd of k points, the following inequality is satisfied,

|range(P, r, L)|
|L|

− |range(P, r, S)|
|S|

< ε.

Proof. Let Er(P, r) =
∣∣∣ |range(P,r,L)||L| − |range(P,r,S)||S|

∣∣∣ denote the size of the error between the ranges ratio

from the original data and the ranges ratio from the sample. By Hoeffding’s bound, for every set P ⊆ Rd of
k points and r ≥ 0, we bound that probability as follows

Pr (Er(P, r) > ε) ≤ 1

e2|S|ε2
,

from Union Bound, and from Lemma 4.7 that claims we have only O
(
ndk log k

)
distinct ranges, we get that

the probability of the failure is bounded by⋃
P⊆Rd,|P |=k,r≥0

Pr (Er(P, r) > ε) ≤ ndk log k

e2|S|ε2
.

Since the probability of the failure should be at most δ, we get

ndk log k

e2|S|ε2
≤ δ,

hence,

|S| ≥
log
(
ndk log k

δ

)
2ε2

.

�

Combining Theorem 4.2 with Corollary 4.10 proves Theorem 4.1.

4.2 Sensitivity

Our coreset is basically a sample consist of small amount of lines from a distribution over our input set of
lines - a distribution that reflect the optimal clustering which we get from a pre-process in a linear time
over the data. In order to get such a good and reflecting distribution, we need to estimate how much a line
influences on the sum of distances in the optimal solution, and give to lines with higher such influence a
higher probability to be chosen. We measure that influence by the line sensitivity.

Let L = {`1, . . . , `n} be a set of n lines in Rd, let P ∗ = {p∗1, . . . , p∗k} ⊆ Rd denote a set of k points
that minimizes the total sum of distances to L over every k points in Rd, i.e. P ∗ = OPT (L, k), and let
P̂ ⊆ Rd be a set of kβ points that satisfies cost(L, P̂) ≤ α · cost(L,P ∗), for any α > 0, β > 0. For every
` ∈ L, let `′ be the parallel line to ` that passes through the closest point to ` in P̂ , and let L′ = {`′1, . . . , `′n}
denote their union. ; See Figure (3).

Definition 4.12 (Sensitivity) For every integer k ≥ 1, the sensitivity of a line ` ∈ L is defined by

SL(`, k) = max
P⊆Rd,|P |=k

dist(`, P)

cost(L,P)
, (8)

and the total sensitivity is then defined to be

S(L, k) =
∑
`∈L

SL(`, k). (9)

9

Figure 3: Example of a set L = {`1, . . . , `10} and its corresponding sets L′ = {`′1, . . . , `′10} and P̂ =
{p̂11, p̂12, p̂21, p̂22}, when k = β = 2. Each cluster of lines on the left is projected onto its center, as we
can see on the right side.

Theorem 4.13 For every integer k ≥ 1 and a set L of finite number of lines in Rd we have

S(L, k) ∈ O(αβkO(k) log n).

Proof.
The proof will be divided into two parts, where in the first part we will bound S(L, k) in terms of S(L′, k),

and in the second part we will bound the size of S(L′, k); See Figure (3) for the first part.

Bound on S(L, k). Let k ≥ 1 be an integer, P ⊆ Rd be a set of k points, let ` ∈ L, and let `′ ∈ L′ denote
the corresponding parallel line to `. Let x ∈ ` and x′ ∈ `′ be the closest points to P in ` and `′, respectively,
and let p′ ∈ P denote the closest point to `′ in P . Hence,

dist(`, P) = dist(`, p′) ≤ ‖x− p′‖ ≤ ‖x− x′‖+ ‖x′ − p′‖ = dist(`, `′) + dist(`′, P). (10)

From the definition of the sensitivity, we get

dist(`′, P) =
dist(`′, P)

cost(L′, P)
· cost(L′, P) ≤ SL′(`′, k) · cost(L′, P), (11)

since cost(L, P̂) ≤ α · cost(L,P), we have

cost(L′, P) =
∑
`′∈L′

dist(`′, P (`′)) ≤
∑
`′∈L′

dist(`′, P (`)) ≤
∑
`′∈L′

[dist(`, P (`)) + dist(`, `′)]

= [cost(L,P) + cost(L, P̂)] ≤ 2α · cost(L,P).

(12)

where P (`) denote the closest point to ` in P . Combining (11) and (12) yields a bound on the right term in
the right hand side of (10),

dist(`′, P) =
dist(`′, P)

cost(L′, P)
· cost(L′, P) ≤ SL′(`′, k) · cost(L′, P) ≤ 2α · SL′(`′, k) · cost(L,P). (13)

10

We bound the left term in the right hand side of (10) by

dist(`, `′) =
dist(`, `′)

cost(L,P)
· cost(L,P) ≤ α · dist(`, `′)

cost(L, P̂)
· cost(L,P) =

α · dist(`, P̂)

cost(L, P̂)
· cost(L,P). (14)

Plugging (13) and (14) in (10) and we thus obtain,

dist(`, P) ≤ ·dist(`, `′) + ·dist(`′, P) = cost(L,P) ·

(
α · dist(`, P̂)

cost(L, P̂)
+ 2α · SL′(`′, k)

)
. (15)

From the last equation and from the definition of the sensitivity of ` ∈ L yields

SL(`, k) ≤
cost(L,P) ·

(
α·dist(`,P̂)

cost(L,P̂)
+ 2α · SL′(`′, k)

)
cost(L,P)

=
α · dist(`, P̂)

cost(L, P̂)
+ 2α · SL′(`′, k).

Summing over every ` ∈ L yields

S(L, k) =
∑
`∈L

SL(`, k) ≤
∑
`∈L

(
α · dist(`, P̂)

cost(L, P̂)
+ 2α · SL′(`′, k)

)
= α+ 2α · S(L′, k). (16)

Bound on S(L′, k). For every i ∈ {1, . . . , kβ}, let L′i ⊆ L′ denote the subset of lines in L′ that intersect
at p̂i. That yields a redefinition for the cost function for every P ⊆ Rd as follows

cost(L′, P) =

kβ∑
i=1

cost(L′i, P), (17)

and the total sensitivity is then bounded by

S(L′, k) =
∑
`′∈L′

max
P⊆Rd,|P |=k

dist(`′, P)

cost(L′, P)
=

kβ∑
i=1

∑
`′∈L′i

max
P⊆Rd,|P |=k

dist(`′, P)

cost(L′, P)

≤
kβ∑
i=1

∑
`′∈L′i

max
P⊆Rd,|P |=k

dist(`′, P)

cost(L′i, P)
=

kβ∑
i=1

S(L′i, k).

(18)

Hence, we will bound S(L′i, k) for some subset of lines L′i ⊆ L′, and thus we will bound the total sensitivity.

Fix a subset L′i ⊆ L′ that are intersected at p̂i ∈ P̂ . For convenience, assume that all the lines in L′i were
shifted by p̂i and now are intersected at the origin. Let S denote the unit-sphere. For every P ⊆ Rd, let
proj(p, S) ∈ S denote the closest point in S to p ∈ P , and let proj(P, S) ⊆ S denote their union over every
p ∈ P . By Thales’ theorem, we have

dist(`′, p) = ‖p‖ · dist(`′,proj(p, S)), (19)

for every `′ ∈ L′i, p ∈ Rd. By denoting with P (`) ∈ P the closest point in P ⊆ Rd to a line `′ in Rd, we can
use (19) and obtain

S(L′i, k) =
∑
`′∈L′i

max
P⊆Rd,|P |=k

dist(`′, P)∑
`∈L′i

dist(`, P)
=
∑
`′∈L′i

max
P⊆Rd,|P |=k

‖P (`′)‖ · dist(`′,proj(S, P))∑
`∈L′i
‖P (`)‖ · dist(`,proj(S, P))

,

11

that is, a set of k weighted points on the unit-sphere that maximizes the sensitivity of each line. For
simplicity, we write it as follows,

S(L′i, k) =
∑
`′∈L′i

max
P⊆S,|P |=k

w(P (`′)) · dist(`′, P)∑
`∈L′i

w(P (`)) · dist(`, P)
. (20)

For every `′ ∈ L′i, let Q(`′) ∈ `′ ∩ S denote an arbitrary point from the two possible intersection points of `′

and the unit-sphere, and let Q(L′i) ⊆ S denote their union over every `′ ∈ L′i. From the right-angle triangle,
for every `′ ∈ L′i, p ∈ S, exists a positive α(`′, p) ≤ 1 that satisfies the following

• 2α(`′,p)
π < sin(α(`′, p)) < πα(`′,p)

2

• dist(`′, p) = sin(`′, p) · ‖p−Q(`′)‖

Combining the last two with (20) yields

S(L′i, k) =
∑
`′∈L′i

max
P⊆S,|P |=k

w(P (`′)) · dist(`′, P)∑
`∈L′i

w(P (`)) · dist(`, P)

∈ O(1) ·
∑
`′∈L′i

max
P⊆S,|P |=k

w(P (`′)) · ‖min {Q(`′)− P (`′), Q(`′) + P (`′)}‖∑
`∈L′i

w(P (`)) · ‖min {Q(`)− P (`), Q(`) + P (`)}‖
.

(21)

Since every k points and their neg are just the optimal 2k points, we have

S(L′i, k) =
∑
`′∈L′i

max
P⊆S,|P |=k

w(P (`′)) · ‖min {Q(`′)− P (`′), Q(`′) + P (`′)}‖∑
`∈L′i

w(P (`)) · ‖min {Q(`)− P (`), Q(`) + P (`)}‖

=
∑
`′∈L′i

max
P⊆S,|P |=2k

w(P (`′)) · ‖Q(`′)− P (`′)‖∑
`∈L′i

w(P (`)) · ‖Q(`)− P (`)‖
.

(22)

In order to bound the last expression, which is the total sensitivity of 2k weighted clustering points, we use
a method due to Feldman and Schulman theorem [?].

Theorem 4.14 Let P ⊆ be as set of n points in Rd. For every p ∈ P and a positive integer k ≥ 1, let

s(p, k) := max
{c1,...,ck}⊆Rd

{w1,...,wk}∈[0,∞)k

mini∈{1,...,k} wi · ‖p− ci‖∑
p′∈P mini∈{1,...,k} wi · ‖p′ − ci‖

,

then, ∑
p∈P

s(p) ≤ kO(k) log n. (23)

Plugging (23) in (22) yields
S(L′i, k) ≤ kO(k) log n,

and substitute the last upper bound in (18) proves the theorem.
�

12

References

[1] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms.

[2] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of lloyd-type methods for the
k-means problem.

[3] Weber, Alfred, 1909, The Theory of the Location of Industries, Chicago, Chicago University Press, 1929,
256 pages.

[4] J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer Science & Business Media,
2007.

[5] D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for
k-means, pca and projective clustering. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Sym-
posium on Discrete Algorithms.

[6] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. Contemporary
mathematics, 26(189-206):1, 1984.

[7] N. Megiddo and K. J. Supowit. On the complexity of some common geometric location problems. SIAM
J. Comput., 13:182196, 1984.

[8] C. H. Papadimitriou. Worst-case and probabilistic analysis of a geometric location problem. SIAM Journal
of Computing, 10:542 557, 1981.

[9] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of points. Journal
of the ACM, 51(4):606-635, 2004.

[10] S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means clustering. In SCG 05: Pro-
ceedings of the twenty-first annual symposium on Computational geometry, pages 126134, New York,
NY, USA, 2005. ACM.

[11] S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median clustering. In STOC 04: Pro-
ceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages 291300, New York,
NY, USA, 2004. ACM.

[12] D. Feldman, M. Monemizadeh, and C. Sohler. A ptas for k-means clustering based on weak coresets.
In SCG 07: Proceedings of the twenty-third annual symposium on Computational geometry, pages 1118,
New York, NY, USA, 2007. ACM.

[13] D. Feldman, A. Fiat, and M. Sharir. Coresets forweighted facilities and their applications. In Foundations
of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages 315-324. IEEE, 2006.

[14] H. W. Hamacher and Z. Drezner. Facility location: applications and theory. Springer Science & Business
Media, 2002.

[15] Gonzlez, T. 1985. Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38,
293–306.

[16] Dorit S. Hochbaum , David B. Shmoys, A unified approach to approximation algorithms for bottleneck
problems, Journal of the ACM (JACM), v.33 n.3, p.533-550, July 1986.

[17] Toms Feder, Daniel Greene, Optimal algorithms for approximate clustering, Proceedings of the twentieth
annual ACM symposium on Theory of computing, p.434-444, May 02-04, 1988, Chicago, Illinois, USA .

13

[18] Mihai Bādoiu , Sariel Har-Peled , Piotr Indyk, Approximate clustering via core-sets, Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, May 19-21, 2002, Montreal, Quebec,
Canada .

[19] Jie Gao , Michael Langberg , Leonard J. Schulman, Analysis of Incomplete Data and an Intrinsic-
Dimension Helly Theorem, Discrete & Computational Geometry, v.40 n.4, p.537-560, October 2008

[20] Danzer, L., Grnbaum, B., Klee, V. (1963), Helly’s theorem and its relatives, Convexity, Proc. Symp.
Pure Math., 7, American Mathematical Society, pp. 101179.

[21] Clustering lines in high dimensional space: classification of incomplete data, with J. Gao and M. Lang-
berg. ACM Trans.

[22] Pankaj K. Agarwal , Cecilia M. Procopiuc, Approximation algorithms for projective clustering, Proceed-
ings of the eleventh annual ACM-SIAM symposium on Discrete algorithms, p.538-547, January 09-11,
2000, San Francisco, California, USA.

[23] Pankaj K. Agarwal , Cecilia M. Procopiuc , Kasturi R. Varadarajan, A (1+ ε)-approximation algorithm
for 2-line-center, Computational Geometry: Theory and Applications, v.26 n.2, p.119-128, October 2003.

[24] Sariel Har-Peled , Kasturi Varadarajan, Projective clustering in high dimensions using core-sets, Pro-
ceedings of the eighteenth annual symposium on Computational geometry, p.312-318, June 05-07, 2002,
Barcelona, Spain.

[25] Dan Feldman, Mikhail Volkov, Daniela Rus, Dimensionality Reduction of Massive Sparse Datasets Using
Coresets, CoRR abs/1503.01663 (2015).

[26] k-Clustering of Big Data via Coresets of Size O(k), Artem Barger, Dan Feldman, TODO: ???.

d logn+log(1
δ)

ε2

14

