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Abstract

Statistical data frequently includes outliers; these can distort
the results of estimation procedures and optimization prob-
lems. For this reason, loss functions which deemphasize the
effect of outliers are widely used by statisticians. However,
there are relatively few algorithmic results about clustering
with outliers.

For instance, the k-median with outliers problem uses
a loss function fc,, . ., () which is equal to the minimum
of a penalty h, and the least distance between the data
point z and a center ¢;. The loss-minimizing choice of
{c1,...,cx} is an outlier-resistant clustering of the data.
This problem is also a natural special case of the k-median
with penalties problem considered by [Charikar, Khuller,
Mount and Narasimhan SODA’01].

The essential challenge that arises in these optimization
problems is data reduction for the weighted k-median prob-
lem. We solve this problem, which was previously solved
only in one dimension ([Har-Peled FSTTCS06], [Feldman,
Fiat and Sharir FOCS’06]). As a corollary, we also achieve
improved data reduction for the k-line-median problem.

1 Introduction

1.1 Weighted optimization problems We show
how to perform data reduction for a variety of problems
in optimization and statistical estimation. The prob-
lems are of the following form: a metric space (M, dist)
and a family of functions I’ are specified. Then, given a
set P of n points in M, the optimization problem is to
find an f which is a (1 + ¢)-approximate minimizer of
f(P) among all f € F, where f(P) =3 p f(p). We
focus particularly on families F' which are appropriate
for minimization of a loss function (e.g., max likelihood
estimation) in statistical inference. A key case we treat
pertains to the problem of clustering with outliers:

k-median with outliers in /(g: (¢4 is R? with the
Euclidean metric.) Here one is interested in modeling
data as being distributed about k centers, with points
that are beyond a threshold distance h being considered
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as outliers.
Foye R — Ry

out __
Fd,k =

where R = nonnegative reals

{fentocra jcj=k,n>0
fen(p) = min{h, min [|p — ¢/}
ceC

Note that, conditional on a point being treated as
an outlier (assigned value h), it has no further effect
on the cost-minimizing choice of the centers C'. This
way of formalizing the treatment of outliers is a slightly
simplified form of the Tukey biweight loss function used
by statisticians to perform outlier-resistant estimation.
It is also a special case of the k-median with penalties
problem considered by Charikar, Khuller, Mount and
Narasimhan [13] (the distinction being that they allow
each point p a custom penalty h(p) for being an outlier).

Data reduction means the replacement of the input
P (implicitly, the uniform probability distribution on
P) by a probability distribution » on a much smaller
set A, such that for all f € F,

fv) = (1 £e)f(P)/n, where f(v)=1 v(p)f(p)-

pEA

(A,v) is often called an e-approximation or core-
set for the data P w.r.t. the family of functions F. In
recent years a substantial body of work has gone into
providing (or showing non-existence of) data reduction
for various problems, because one can then run a
relatively inefficient optimization algorithm (possibly
even exhaustive search) on the core-set.

1.2 Our Results We show that for any constant
k, we can efficiently construct core-sets of cardinality
O((Alog?®n)/e?) for certain types of k-clustering prob-
lems; A is a Vapnik-Chervonenkis-type measure of the
combinatorial complexity of the clustering problem. (If
P is in ¢4 then A € O(d); if P is in a finite metric space
then A € O(logn).)

Theses clustering problems include the well-known
k-median, k-means, etc., but go beyond these to include
treatment of outliers, and “M-estimators” in robust
statistics such as the Huber and Tukey loss functions.

The key obstacle we overcome, which has not been
overcome previously except in one dimension, is that
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of handling “weights” on the clustering centers. The
ability to handle weights and non-increasing distance
functions is what allows us to provide core-sets for the
outliers family Fg},‘g defined above.

Construction time. Our algorithm is randomized and
runs in time linear in the input size. As observed in [21],
core-set construction can be derandomized using de-
terministic algorithms for computing e-approximations.
Matousek provided a general algorithm for computing
such approximations in time linear in n but exponential
in A [38]. Indeed, these techniques can also be applied
to our core-sets; see [21] for more details. For the special
case d = 1 (points on a line) we can construct determin-
istic e-approximations by choosing a single representa-
tive from every subset of en consecutive input points.
This yields corresponding core-sets of size only linear in
log?(n) /e for the case d = 1, which is smaller than the
output of the randomized algorithms.

Streaming and distributed computations Using
the map-reduce technique [28], our core-sets imply
polylogarithmic space and polylogarithmic update-time
algorithms for clustering streaming data with outliers;
this is apparently the first result of this type. Similarly,
the techniques can be adapted to parallelization[23, 5].

We summarize our results in Tables 1 and 2 and in
the following paragraphs. The following first example
explains what we mean by weights and is also, from
the mathematical point of view, perhaps the central
example to keep in mind:

Weighted k-median in /4: Here one is interested in
modeling possible heterogeneity among cluster centers.
This is natural, for example, in the context of mizture
models in which the components of the mixture have
varying standard deviations.

wght | mpd
Fye . R — Ry

ht
Eyt ={fc}ocraxr, cl=k

fe(p) =

(Jhin w- lp—cll

Our approach is more general than is implied by
these two examples, but is somewhat technical and is
deferred to Section 2; our main theorem is Theorem 5.1
and example application of it for robust statistics can
be found in Corollary 5.2.

k-line median in /4. Heterogeneity also arises natu-
rally from geometric considerations, in the reduction of
the (unweighted) k-line-median problem to weighted k-
median on a line (d = 1) [27, 21]. Hence, the above core-
sets for weighted centers immediately imply the smallest
known core-sets for k lines in R.
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Robust Statistics (M-estimators). As described,
our approach provides core-sets for (at least) two of
the most important outlier-resistant statistical estima-
tors. Huber’s estimator is used very widely [25, 32];
Zhang [50] writes that “this estimator is so satisfac-
tory that it has been recommended for almost all situ-
ations”. Hardin et al. [29] write that “Tukey’s biweight
has been well established as a resistant measure of loca-
tion and scale for multivariate data [44, 32, 31]”. Both of
these estimators are types of M-estimators; very little is
known about the computational complexity of optimiz-
ing M-estimators [42, 41, 44, 29, 25, 32] and our paper
shows how to make improvement in this direction.

Formally, for a distance threshold h for outliers, a
point p € P and a given query center ¢ € R%, with
x = ||p — c||, we define the cost functions

SR (p) = min{z?/2, h(z — h/2)}
3hiz? — 3h2zt 4 26
6h4 }

The corresponding core-sets for the families of these
functions are of size O(Ae~2log?n). See Sec. 5 for the
more general version with a set of k-weighted centers.

Robust k-median with m outliers. Our method
also enables an approach to the Robust k-median with
m outliers problem: discarded outliers can be treated
simply as infinite-weight centers, so our core-sets can
handle a constant number of discarded outliers. This
causes an exponential dependence of the size and run-
time on m, but is still the only known near-linear-time
(in n) (1 + e)-approximation for the problem, even for
k=1and d=2.

fch,,Tukey (p) = min{h2/6,

1.3 Literature

Sampling literature. Data reduction by uniform
sampling goes back to the foundations of statistics;
the most relevant line of work for our purpose is that
initiated by Vapnik and Chervonenkis [49, 43, 30, 12,
48, 40, 33, 8, 9, 3, 7] (and see [45, 47]). However,
for estimation of general nonnegative (esp., unbounded)
loss functions, and for the design of approximation
algorithms for (related) optimization problems, it is
essential to design weighted sampling methods. This is
a more recent line of work, beginning at least with [10,
15, 34, 4, 46]. There are also methods for deterministic
data reduction [39, 18, 21] but the results are generally
weaker and we shall not emphasize this aspect of the
problem in the paper.

Clustering literature. The k-median problem was
shown to be NP-hard by a reduction from dominating
set [36]. This problem is a special case of k-clustering
problems with various exponents r > 0, with loss

Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



Optimization Problem Metric l. loss | Approx. | Time Ref.
k-Median with penalties Arbitrary | r =00 3 O(n?) [13]
k-Median with penalties Arbitrary | r=1 4 n3+0M) [13]
k-Median with penalties Arbitrary | r € O(1) 0(1) EO®nlog(n) + nk®®log”n | »x
k-Median with penalties R r e 0(1) 1+¢ ndkO®) + (ke™2 log(n))k Hok
M-Estimators Arbitrary | r € O(1) | Heuristics | ? e.g.[29]
M-Estimators R¢ re 0(1) 1+e¢ ndkO®) + (ke=2 log(n))k *ok
M-Estimators Arbitrary | r € O(1) 0(1) EO®Inlog(n) + nk®® log?n | »x
Robust k-Median with m outliers | Arbitrary | =1 o(1) O(K*(k + m)?n3logn) [14]
Robust 2-Median with m outliers R? T =00 1 O(nm7log® n) [1]
Robust 4-Median with m outliers R? r =00 1 nmP® logn 1]
Robust 5-Median with m outliers R? r =00 1 nmOPM log® n) 1]
Robust k-Median with m outliers | Arbitrary | r = oo 3 O(n?) [13]
Robust k-Median with m outliers R r e O(1) 1+¢ nd(m + k)Om+F) ok
+(e " klogn)OM
Robust k-Median with m outliers | Arbitrary | r € O(1) O(1) nlog(n)(m + k)Om+F)
+(klogn)°M *k
k-Line Median R¢ r=1,2 l+c | nd(k/e)°D + d(logd) /97" | [16]
k-Line Median R r=1 1+e ndk®M + (e=Tlogn)O ) [27]
k-Line Median R r= l+e ndk®® + (e=41ogn)O @) [20]
k-Line Median R? r=1,2 l+e | ndk®D 4 (6 Tlogn)O® 21]
k-Line Median R? re 0(1) 1+¢ ndk®® + =2 log(n) - kOF) *ok
Table 1: Approximation Algorithms. The input is a set P of n points in R? or in an arbitrary metric
space. The results of this paper are marked with *x.
Core-set Metric {, loss Size Ref.
Weighted k-median R! r=1 (e~ Tlogn)O® [27]
Weighted k-median R! r= (e~ Llogn)O*) [20]
Weighted k-median R! r =00 (k/)O®) [2]
Weighted k-median R? r =00 O(k! /%) [26]
Weighted k-median RY/Arbitrary | » € O(1) | k9 (e~ 1dlogn)? *k
k-Line median RY r=1,2 | dke 2+ (¢ logn)O*") [21]
k-Line median R r€O(1) | dke2 + kO (¢~ Tlogn)? *x
k-Median with penalties R?/Arbitrary | € O(1) | k%) (e~ Tdlogn)? ok
Robust k-median with m outliers | R?/Arbitrary | r € O(1) | (k +m)°?®F™ (e~ Tdlogn)? | **
M-Estimators R?/Arbitrary | r € O(1) | k9P (e~ Tdlogn)? ok
Table 2: Core-sets. The input is a set P of n points in R? or in an arbitrary metric space. New

results of this paper are marked with xx. We denote d = O(logn) for the case of an arbitrary metric
space.
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function feo(p) = mineee dist(p,c)” for centers C' =
{c1,...,¢cx}. The k-means problem (exponent r = 2)
is NP-hard even for k¥ = 2 [17] or in the Euclidean
plane [37]. The case r = oo refers to the k-center
problem fc(P) = max,ep min.ec dist(p, ¢); it is NP-
hard to approximate this to within a factor of 1.822
even in the Euclidean plane [19].

The current best approximation guarantee for k-
median in general metrics is (3+¢) [6]. When & is fixed,
[22] provided a weak core-set of size independent of d
for k-means that yields an algorithm that takes time
O(nd) + (k/e2)9*/2). (A weak core-set is sufficient for
optimization but not for evaluation of general queries.)
Recently, this result was generalized and improved for
any constant » > 1, with weak core-sets of size only
linear in k [21]. Strong core-sets of size (dk)?™") for the
k-median problem for any constant r > 0 were provided
in [35].

In the k-median with penalties problem [13], for each
input point we may decide to either provide service
and pay the service cost to its nearest center, or to
pay the penalty. Setting all penalties to 1 gives the
standard notion, which has has also been studied earlier
in the context of TSP and Steiner trees, see [24, 11] and
references therein. As mentioned above, this is precisely
our F94% problem; it is also very close to clustering with
Tukey loss see Sec. 5.

An alternative approach to handling outliers is the
robust k-median with m outliers problem due to [13].
Here there is, besides the usual k-median formulation,
an additional parameter m which is the number of
points we are allowed to “discard”. The problem is to
place the k centers so as to minimize the sum, over the
best set of n—m data points, of the distance to the clos-
est center. This is a less “continuous” way of treating
outliers and, correspondingly, m enters significantly into
the time complexities of algorithms. Our weighted-k-
median algorithm can be used to address this problem,
see Sec. 5. [13] also considered relaxing the number of
discarded points, and provided a polynomial time algo-
rithm that outputs a k-clustering serving (1 —¢)(n—m)
points with cost within 4(1 4+ 1/¢) times the optimum
cost (for n — m points). Recently, [21] improved the
running time for this problem to linear in n by showing
that an e-approximation of P for k balls (in particular,
a small uniform random sample) is a core-set for this
problem.

The weighted k-median problem was introduced in
Har-Peled [27]; that paper provided an O((logn)¥)-size
core-set for this problem in one dimension, and posed
the construction of core-sets in higher dimension as an
open problem. The same paper proved a lower bound
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of
Q (max { (k/c)log(n/k), 2k})

for the size of a core-set for weighted k-medians, even in
one dimension. (We do not know a stronger lower bound
in higher dimension.) Thus our results are optimal, as
a function of n, up to a log factor.

In the k-line-median problem, the “centers” are
actually lines in R?. This problem can be reduced to the
weighted k-median problem in one dimension [27, 21].
Our core-set for this problem, of size O((¢~!logn)?),
improves on the best previous O((¢™*logn)°®)). Our
method also considerably simplifies, even for the one-
dimensional version of the problem, the construction
in [27] (which both these papers depend upon).

2 Preliminaries

2.1 Loss Functions Let (M,dist) be the metric
space in which our points (or data items) lie. Our frame-
work depends upon a distortion (or “loss”) function

D: ]R_;,_ — R+.
We impose the following requirements on D:
1. D is monotone non-decreasing.

2. Log-Log Lipschitz Condition: There is a constant
0 < r < oo such that for all z,§ > 0,

(2.1) D(ze%) < €™ D(x).

We use D to denote a bivariate function as follows: for
p,q € M, D(x,y) := D(dist(p, q)).

LEMMA 2.1. The conditions above imply
(i) For ¢ = (4r)",

< ¢D(p,q D(Z’ J

(22) [)(pa C) - [)(qac)

(ii) (Weak triangle inequality) For p = max{2"~1 1},

(2.3) D(p,q) < p(D(p,¢) + D(c,q)).
Proof. (i) Let = = dist(p,c),y = dist(q,¢),z =
dist(p, q). So we are to show D(z) — D(y) < d)D( )+

D(z)/4. We suppose that z > y and D(z) > ¢D(z)
otherwise the lemma is immediate. So by Eqn 2.1,
x> 2l

An equivalent form of Eqn 2.1 is that for 6 > 0,
D(xze™%) > e " D(z). So D(z) — D(y) < D(z)- (1 —
(y/2)").

Note that for w > 0, 1 — " < r(l — w); this
follows because, viewing each side as a function of
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u, the two functions are tangent at w = 1, and the
LHS is convex-cap while the RHS is linear. Applying
this we have D(z) — D(y) < D(z) -r - (z — y)/=.
Applying the triangle inequality x —y < z we have that
D(z) — D(y) < D(z) - r - z/xz. By our earlier bound
this is < D(z) - r- ¢~ /7. Plugging in ¢ = (4r)" implies
Eqn 2.2.

(ii) By the triangle inequality and Eqn 2.1, for any
0<p<l,

Dip.o) < pDip.c) (O

+(1—=p)D(c,q) (diSt(p;ﬁit?cdqijt(c’ q)>

= (dist(p, ¢) + dist(c, q))"

o [ 2D@.c) | (1—p)D(c,q)
dist(p, )" dist(c, q)" '

Substituting p = dist(p, ¢)"/(dist(p, ¢)" + dist(c, q)") we

I 7™ ™ dist(p,c)+dist(c,q))"
have D(p,q) < (D(p,c) + D(c,q)) §oioteptied).
By convexity considerations, for » > 1 the factor is
maximized with dist(p,c¢) = dist(c,q) and for r < 1

it is maximized with dist(c, ¢) = 0, yielding Eqn 2.3.

2.2 Tractable (M, D) Problems

DEFINITION 2.1. (TRACTABLE (M, D) PROBLEMS)
Let (M, dist) be a metric space. Let D be a function
from M x M to [0,00). We call the problem (M, D)
tractable if inequalities (2.2) and (2.3) hold for some
constants ¢, p € (0,00).

Thus the conditions we imposed on D in Sec. 2.1
imply that (M, D) is tractable with ¢ = (4r)", p =
max{2 ! 1}.

In Theorem 4.1 we show how to perform data
reduction for tractable (M, D) problems, conditional on
a shatter function (essentially, VC dimension) bound.

Let P C M be a finite set of points. For B C M,
we denote by closest(P, B,~) the set that consists of
the [v|P|] points p € P with the smallest values of
minge g D(p, q). Forp € M and aset C C M xR define
Dw (p,C) = minge yec W - D(p,c). Each (c,w) € C
is called a wetghted center. For integer k > 1 write
[k] :={1,...,k}.

We show how to perform data reduction for a va-
riety of statistical problems by considering appropriate
choices of M and D and showing that the above proper-
ties are satisfied. The families of functions we consider
have the following description:

Fyp:M— Ry
Fuyp ={fctecuxr, o=k
f(p) = Dw(p,C)
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In this notation, the weighted k-median problem is
(M = R%, dist = Euclidean metric, and D = dist); the
weighted k-mean problem is (M = R%, dist = Euclidean
metric, and D= distz); and the k-median with outliers
problem is (a special case of) the problem (M = RY,
dist = Euclidean metric, and D = min{dist, 1}).

As established in [35, 21], a sufficient condition for
data reduction is that the total sensitivity T =T (Fy; p)
be small, and that we be able to effectively compute
good upper bounds s(p) for the sensitivities of the
points of P'; the cardinality of the resulting set A
is then approximately 72 d/e%, where d is a Vapnik-
Chervonenkis measure of the combinatorial complexity
of the family F; 5.

Before showing how to compute bounds on the
sensitivities of points we need two more definitions.

DEFINITION 2.2. For a finite set Q C M and € [0, 1],
define

D*(@Q7)=min > D(pc).

p€Eclosest(Q,c,v)

A point ¢ which achieves the above minimum is, in a
sense, a median of a densest region of the data. (One
may also think of it as a good “median with outliers”
for the data.) In what follows it would be very useful
to have a subroutine to compute such a point, but this
is a nearly circular request (though not quite as hard as
the full goal of the paper). Instead we will be able to
achieve our results using a subroutine which produces a
point with the following weaker property.

DEFINITION 2.3. (ROBUST MEDIAN) For v € [0,1],
7 € (0,1) and o > 0, the point ¢ € M is a (7,7, a)-
median of the finite set Q C M if

D(p,q) < a-D*(Q,7).
p€Eclosest(Q,{q},(1—7)7)

(2.4)

3 Bounding point sensitivities

3.1 Sensitivity bound for weighted medians
The key technical advance in this paper lies in the
following lemma, which shows how to translate the
new definitions of the previous section into good up-
per bounds on the sensitivities of data points. This
lemma is what enables us to handle weighted clustering
problems.

In each application one needs only to ensure that
the problem is “tractable” as in definition 2.1, and that
the appropriate shatter function (~ VC dimension) is
bounded.

TFor a family F and n data points P, the sensitivity of p € P
is s(p) = supsep f(P)/((1/n) 2o ep F()); the total sensitivity
T(F) is supp EpGP s(p)-
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LEMMA 3.1. Let (M, D) be tractable and let P C M Proof of Case (i): By (3.6) we have
be a finite set. Suppose that (qr, Qr) is the output of

the algorithm Recursive-Robust-Median(P, k). Then DW(pv C) < w; - D(p, ¢;)
for every set C = {(c1,w1), -+, (ck,wx)} € M x [0, 00) >gep Dw(a,C) — wi )2 cp Dw(g, C)
and p € Qy, such that Dy (p,C) > 0, we have D( )
, Ci
i (3.7) < _ZBG)
Dw (p,C) < O(k) > gep, D(a,ci)
Yger Dw(a,C) 1@kl o _16¢pa- D;/|1Q}]

a z:quiin,1 D(q,ci)

By Definition 2.3, we have D*(Q;_1,1/k) > Df/a.
Using this with (3.5) yields

Algorithm 1: Recursive-Robust-Median(P, k)
Input: A set P C M, an integer k > 1.

Output: A pair (¢x, Qx) that satisfies Z D(g.¢;) > D Ja.
Lemma 3.1. =
qEPNQi—1
1 QO — P
2 fori=1to k do By the last inequality and (3.7) we obtain
3 Compute a (1/k, T, a)-median ¢; € M of ~ R
Q;—1 for some constants 7 € (0,1) and Dw (p,C) < 16¢pa - D} /|1Q5 | < 16¢pa’
€ (0,00) /»f See Definiti?n 2.3 'of Ser Dw(C) = D ja S o
(v,7,a)-median, and Algorithm 2 in
Section 2.3 for a suggested Proof of Case (ii): By the pigeonhole principle,
implementation. */ ¢i=cjforsomei,jek+1],i<j. Putge P,NQ,-1
4 Q; « closest(Q;_1,{q;}, (1 —7)/(2k)) and note that p € Qr C Q;_1. Using the Markov
5 return (g, Q) inequality,
. 5 207,
Proof of Lemma 3.1: Consider the variables Qq, ..., Qk D(q,q;-1), D(p,qj—1) < TN
and q1,...,q, that are computed during the execution i1

of Recursive-Robust-Median(P, k). A point p € P is

- By this, the s f D(-,- 2.
served by the weighted center (¢, w) € C if Dy (p,C) = y this, the symmetry of D(-,-) and (2.3),

w - D(p,c). For every i € [k+ 1], let (¢;,w;) € C denote ) } ) 4p- D
a center that serves at least |Q;_1|/k points from Q;_;. D(p,q) < p(D(p,qj-1) + D(gj-1,9)) < TJ_I
Let P; denote the points of P that are served by (¢;, w;). Q1]

For every i € [k], let Using the last inequality with (2.2) yields

Q; = closest(Q;_1,{q:},(1 —7)/k), D 2 2 o
q D(p,c;) — D(g.¢;) < ¢D(p,q) + D(pT’J)

and Df =3 cq D(a ¢i)- 4pp-D;_, T

Since |P; N Q1] > |Qi—1|/k > |Q%], we have by AN D(i’ %)
Definition 2.2, =1 )
i ) Agpo- Di  D(p,c;)
(3.5) Y D(a.c) 2 D*(Qimr, 1/k). A 4
qEPNQi—1

Since Case (i) does not hold, we have

We prove the lemma using the following case anal- - - -
ysis. 16¢pa - D} /|Qr| < D(p,ci) = D(p, c;)-

Case (i): There is an i € [k] such that Combining the last two inequalities yields

- 16¢pa - D 5 3 AN B o
(3.6) D(p,c;) < %- D(p,cj) — D(q,¢j) < D(i’ <) + D(i’ )
_ D(p,¢))

Case (ii): Otherwise. =—0
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That is, D(q,¢;) > D(p,c;)/2. Hence,

Dw(]} C) <
quP DW(C) B

D(p7 C])
qupjﬁQj71 D(q7 C.]>
QD(p, Cj)
D(p,cj) - [Py N Qj-1|
2k

<
|Qj—1]
2k

< =
Qx|

N

O

4 Data reduction for tractable (M, D) problems
DEFINITION 4.1. (dim(M, D, k) [49]) Let (M,D) be
tractable. For every v > 0 and C C M X [0,00) of
size |C| = k, let ball(C,r) = {p e P|Dw(p,C) <r
Let

balls = {ball(C,r) | C C M x [0,00),|C| = k,r > 0}.

The dimension dim(M, D, k) is the smallest integer d
such that for every finite S C M we have

{SNp|Behballs}| <|S|¢ .

The following is a corollary of [21, Theorem 13.1].

COROLLARY 4.1. Let (M, D) be tractable, and P C M
be a finite set of points. Let ¢ € (0,1/4). Let s : P —
[0,00) be a function on P such that

CeMx[0,00),|C|=k qup Dy (q,C)

Let T = ZpEP s(p), and b be a sufficiently large

constant. Pick a (multi)-set A of bT?(dim(M, D, k) +
log(1/6))/e? points from P by repeatedly, i.i.d., selecting
p € P with probability s(p)/T. For p € A let v(p) =
T /(JA| - s(p)). Then, with probability at least 1 — §:

For allC € M x [0,00) and |C| =k :

is an (¢/(2T))-approximation of G, with probability at
least 1 — . Assume that this event indeed occurs. Let
U= {g9-|G|/|S||ge€ S} By [21, Theorem 13.1], we
obtain that for all C € X,

(4.8)
e 5(O)
Z;Dfp J;f( ) S TpGaP m(fp)zém(fp)
We have
S =Y B
pEP peEP
and, for every C' € X
e T Dw T .
%gmm‘ﬂ%‘?"EQD“

For every f =gy, - |G|/|S| € U we have

_95,(0) |G|

_ fp(C)-n
—m(f,)| A

. DW(P» C)-n
B m(fp)| Al

- [)W(l% C)-T
— s(p) - 14]

= v(p)Dw (p, O).

Substituting the last three inequalities in (4.8) yields

VO € X .

> (€)=

pEP

e T -
S?'EZDW(Q’C) n

qeP

ZEZ.Dw(p,C

peEP

> w(p)Dw (p, C)

pEA

Z Dw(p,c) = Z v(p)Dw (p,c)| <€ Z Dw(p,¢)-  THEOREM 4.1. Let (M, D) be tractable. Let P C M be
pel peA peP a set of n points, and (£,9) € (0,1/10). Let A and v
i be the output of the procedure Core-Set(P, k,e,0); see
Proof. Let X = (M x [0,00))". For every p € P and Algorithm 2. Then the following hold:
CeX, let fp(C) = DW(pvc)’ Sfp = f;/; = fp’ m(fp) =
n-s(p)/ T, and gy, (C) = f,(C)/m(fp). Let Gy, consists  (3)
of m(f,) copies of gy and let G = {J,p Gy,. Hence,
S = {gf |pe A} is a uniform random sampling from k%) (log n)? di ~
» =27 . M, D, k) +1log(1/4)).
G. By [21, Theorem 6.9], for a sufficiently large b, S 4] e? (dim(M, D, k) +log(1/9))
1349 Copyright © SIAM.
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(ii) With probability at least 1 — 4,

YC C M x [0,00),|C| =k :

pEP peEA
<e> Dw(p,C
peEP

Algorithm 2: Core-Set(P, k,¢,0)

Input: A set P C M, an integer k£ > 1, and
7,6 € (0,1/10) where (M, D) is
tractable.

Output: A set A and a probability measure v

on A that satisfy Theorem 4.1.
1 b« a constant that can be determined from the

proof of Theorem 4.1

2 Qo P

while [Qo| > b do

4 | (qr,Qr) <
Recursive-Robust-Median(Qo, k)
/* See Algorithm 1.

for each p € Q do s(p) —

Qo — Qo \ Qk
for each pe Qo do s(p) «— 1
T =2 pepsp)
Pick a (multi)-set A of
bT?(dim(M, D, k) + log(1/6))/e? points from P
by repeatedly, i.i.d., selecting p € P with
probability s(p)/ T

w

*/

Qx|

© N o o

T

10 for each p€ Ado v(p) « ——H—
|A| - s(p)

11 return (A4,v)

The structure of the algorithm is this: Algorithm
1 is run repeatedly to identify a “dense” cluster in the
data (Line 4). Due to Lemma 3.1 the sensitivity of
each point in this cluster is bounded by some constant
divided by the current number of points. The cluster is
then removed, and we repeat.

Proof. (i) For every i € [k], let QEJ) denote the value
of @; at Line 3 of Algorithm 1 during the jth “while”
iteration. Let J denote the total number of “while”
iterations. By Line 4 of Algorithm 1, we have that

Q7] = |Q, |/ (bF). Hence,

oW > 19071 _ 195"]
—( k)k = LO(k)
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By the last equation and Line 6 of Alg. 2, for every
j € [J — 1] we have

(4.9)
()
ot <[ ||t < ot - 25

1) J 1 J
‘Qo ‘ ( k,O(k)> =n (1 - kO(k)) :

Since ’Q(()J)’ > 1, substituting § = J — 1 in the previous

inequality we conclude that
. < ogn.
(4.10) J < kO® log

By Line 3, the size of Q)¢ during the execution of
Line 7 is O(1). By the definition of s(p) in Lines 5

and 7 we have
T=Y sp)=> > sp)+0(1)

peP j€[]]p€Qk
=y > = J bk +O(1).
jE[J] PEQK |Qk|

Together with (4.10) we obtain 7 < k9(*)
and Line 9 we thus have

bT? (dim(M, D, k) + log(1/5))
52

- (dim(M, D, k) + log(1/4)).

logn. By this

Al =

EO®) (log n)?
= 672

(i) The pair (q,(cj), ,(cj)) satisfies Lemma 3.1 for every
j € [J]. Hence, for the value s(p) that is defined in
Line 5 of Algorithm 2, and an appropriate b,

|Q§€J)| B qu@éj) DW(Q7C) B quP DW(q7C)
By Corollary 4.1, with probability at least 1 — §/b we

have

YC € M x [0,00),|C| =k :

ZDW(pac) - Z ( )DW b,c

pEP peEA

s(p) =

S0t

5 Efficient implementation

Algorithm 2 calls the proce-
dure Recursive-Robust-Median in Line 4 which
is in turn required to compute a robust median in its
third line. In this section we show efficient computation
of such a robust median that succeeds with high
probability. In Theorem 5.1 we then bound the running
time of Algorithm 2.
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LEMMA 5.1. ([21]) Let (M, D) be tractable. Let Q C
M be a finite set of points. Let v € (0,1), and 7,6 €
(0,1/10). Pick uniformly, i.i.d., a (multi)-set S of

b 1

points from Q, where b is a sufficiently large universal
constant. With probability at least 1 — 6, any ((1 —
7)Y, 7, 2)-median for S is a (v, 47,2)-median for Q.
Proof. For every p € P and ¢ € M let f(c) = D(p, c).
Let D(S) = S for every S C P. Using the (weak)
triangle inequality, we have that one of the points of S
is a constant factor approximation for the median of S.
The theorem now follows from [21, Lemma 9.6].

LEMMA 5.2. Let (M,D) be tractable. Let Q C M be a
finite set of points, k > 1 an integer, and 6 € (0,1). Let
q € M be the output of a call to Median(Q,k,J); See
Algorithm 8. Then, with probability at least 1 — 5, the
point q is a (1/k,1/4,2)-median for Q. The running
time of the algorithm is th*k*log®(1/8) where O(t) is
the time it takes to compute D(p, q) for p,q € Ms.

Algorithm 3: Median(Q, k, )
Input: A finite set Q C M, an integer k > 1,
and ¢ € (0,1/10).
Output: A point ¢ € M that satisfies
Theorem 5.2.
1 b < a universal constant that can be determined
from the proof of Theorem 5.2
2 Pick a uniform i.i.d. sample S of bk?log(1/9)
points from @
3 ¢ < a point that minimizes

Zpéclosest(s,{q},15/(16k)) D(pv q) over q € S
4 return q

Proof. We consider the variables b and S as defined in
Algorithm 3.

Running time: For a set @ C M, the running time
of Median(Q,k,d) is dominated by Line 3 which can
be implemented in t[S|> = tb*k*log?(1/d) time by
computing the distance between every pair of points in
S and using order statistics.

Correctness: Put 7 = 1/16 and v = 1/k. Let ¢* € M
be a ((1 — 7)7,0,1)-median of S. Let ¢ be the closest
point to ¢* in S. By (2.3), for every p € M we have

D(p,q) < p(D(p,q*) + D(¢*,q)) < 2p- D(p.q").
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Summing this over every p € closest(S, {¢*}, (1 —7)7)
yields

D(p,q) < 2pD*(S, (1 —1)v).

2

pEclosest(S,{q},(1—7)v)

Hence, ¢ is a ((1 — 7)7, 0, 2)-median of .S, which is also
a ((1—=7)y,7,2)-median of S. The theorem now follows
from Lemma 5.1.

THEOREM 5.1. Let (M, D) be tractable. Let P C M be
a set of n points, and (g,0) € (0,1/10). Then a set A
and a function v can be computed in time

ntko(k) + tko(k) log(n) log2 (log(n)/5)

kO(k) 1 3
L K (logn)”

= (dim(M, D, k) +log(1/9)).

such that the following hold:
(i)

Ok) 2 .
|A| = kiw . (dim(M,D,k) + log(1/5)).

(ii) With probability ot least 1 — 4,

VO C M x[0,00),|C| =k :

Z DW(pa C) - Z l/(p) . [)V[/(p7 C)

peEP pEA

<e> Dw(p,0).

peEP

Proof. Let A and v be the output of Algorithm 2.
Properties (i) and (ii) then follow from Theorem 4.1.
It is left to bound the construction time. The run-
ning time of Algorithm 2 is dominated by the call
to Recursive-Robust-Median in Line 4 with Qéj) dur-
ing the jth “while” iteration, which we bound as follows.

Line 3 of Recursive-Robust-Median compute a
median ¢; of Qgﬂ)l for every i € [k]. By replacing §
with ' = 6/(bJk) in Lemma 5.2, we have that, with
probability at least 1 —¢’, such a ¢; can be computed in
time tb2k*log®(1/d"). Hence, with probability at least
1—k§ =1-46/(bJ), the desired g; is computed for
every i € [k]. Line 4 of Recursive-Robust-Median can
be computed in ¢- |Q£i)1| <t- |Qéj) using order statistics.

We conclude that with probability at least 1 — §/b,
Line 4 of Algorithm 2 computes the desired pair (qx, Q)
during all the J “while” iterations. Using (4.9), the

Copyright © SIAM.
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overall execution time of Line 4 is

ST + STtk log(1/8)

JelJ] JelJ]
<th S 1Q| + Ttk log? (/5)
JelJ]
1\
< ntk Z] <1 — ko(k))

JEJ
+ tk9®) log(n) log*(log(n)/5)
< ntkC® 4 k9% log(n) log? (log(n)/9).

Line 9 of Algorithm 2 can be implemented using a
binary tree in time

EO®) (log n)3

log(n) 4] <

- (dim(M, D, k) +log(1/4)).
The last two inequalities prove the theorem.

nght

d,k
and F| C‘l’,‘}: as special cases by taking, respectively, h = oo
or all weights equal.

The following main theorem includes both

THEOREM 5.2. Let P be a set of points in a metric
space (M, dist), r € (0,00) be a constant and h € (0, 00).
Let k > 1 be an integer, and € € (0,1/10). A set A of
size

oK) 2 ~
) = im0, D, k) + os(1/0))
and a weight function v :

time

A — Ry can be computed in

900 4 6190 og(a) g log(n) )

ko(k) 1 3 ~
n % - (dim(M, D, k) + log(1/6)),
such that, with probability at least 1 — 9,

VO C M x [0,00),|C| = k :

> fep) = > vip)fep)| <) folp),

peEP peEA pEP

where fc(p) == min( ,ec (w min {h, dist"(p, )} ), and
t is the time it takes to compute D(p,q) for p,q € M.

Proof. Define D : Ry — Ry as D(z) = min{h,2"},
and D(p,q) = D(dist(p,q)). Using Theorem 4.1 and
Lemma 2.1, it suffices to note that D is monotone non-
decreasing and to show that

D(ze®) < e D(z).
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Indeed, for every x,d > 0 we have

D(ze®) = min {h,xrer‘s}
< min {e"‘sh7 xT'eT‘S}
= ¢" min {h, 2"}

=" D(x).

(5.11)

All the applications that are mentioned in the intro-
duction are straightforward results of the last theorem.
For example, the following loss (or distortion) func-
tions, known as M-estimators, are popular with statisti-
cians performing robust (i.e., outlier-resistant) estima-
tion [32, 50]. By defining z = dist(p,q) and h as the
distance threshold for outliers, we obtain:

D s (p, ) = DIHI ()

= min{z?/2, h(x — h/2)}
DMTukey (Qist (p, q)) = DT (i)
3htx? — 3h%at + x6}

= min{h?/6, i

It is straightforward to show that the families
(M, DVHubery and (M, DVTukeY) are tractable, with a
proof very similar to that in (5.11). The shatter func-
tion is again that of balls in the metric space. Conse-
quently, Theorem 5.2 shows that we can perform data
reduction for k-clustering (with weights) for these loss
functions.
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